Extremal Homogeneous Polynomials on Real Normed Spaces

Pádraig Kirwan*

University College, Galway, Ireland

Yannis Sarantopoulos

National Technical University, Zografou Campus 157 80, Athens, Greece

and

Andrew M. Tonge

Department of Mathematics and Computer Science, Kent State University, P.O. Box 5190, Kent, Ohio 44242 E-mail: tonge@mcs.kent.edu

Communicated by András Kroó

Received June 15, 1996; accepted in revised form April 30, 1998

If *P* is a continuous *m*-homogeneous polynomial on a real normed space and \check{P} is the associated symmetric *m*-linear form, the ratio $||\check{P}||/||P||$ always lies between 1 and $m^m/m!$. We show that, as in the complex case investigated by Sarantopoulos (1987, *Proc. Amer. Math. Soc.* **99**, 340–346), there are *P*'s for which $||\check{P}||/||P|| = m^m/m!$ and for which \check{P} achieves norm if and only if the normed space contains an isometric copy of ℓ_1^m . However, unlike the complex case, we find a plentiful supply of such polynomials provided $m \ge 4$. © 1999 Academic Press

1. INTRODUCTION AND NOTATION

Let *E* be a vector space over *K*, where $K = \mathbb{R}$ or \mathbb{C} . A mapping $P: E \to K$ is said to be an *m*-homogeneous polynomial on *E* if $P(s\mathbf{x} + t\mathbf{y})$ is an *m*-homogeneous polynomial (in the algebraic sense) in *s*, $t \in K$ for arbitrary fixed \mathbf{x}, \mathbf{y} in *E*. It follows easily that, for any $k \ge 2$, $P(t_1\mathbf{x}_1 + \cdots + t_k\mathbf{x}_k)$ is an *m*-homogeneous polynomial (in the algebraic sense) in $t_1, ..., t_k \in K$ for arbitrary fixed $\mathbf{x}_1, ..., \mathbf{x}_k \in E$. Consequently, for a finite-dimensional vector

* Current address: Waterford Institute of Technology, Waterford, Ireland.

(AP)

space E, this abstract definition of an m-homogeneous polynomial coincides with the usual algebraic definition.

As shown in Hörmander [3, Lemma 1] (see also [2]), to each *m*-homogeneous polynomial *P* on *E* there corresponds a unique symmetric *m*-linear form \check{P} on *E* such that $\check{P}(\mathbf{x}, ..., \mathbf{x}) = P(\mathbf{x})$. The map \check{P} has a variety of common names, including *the mth polar of P*, *the polarized form of P*, and *the blossom of P*. It is defined by

$$\check{P}(\mathbf{x}_1, ..., \mathbf{x}_m) := \frac{1}{m!} \frac{\partial^m}{\partial t_1 \cdots \partial t_m} P(t_1 \mathbf{x}_1 + \cdots + t_m \mathbf{x}_m).$$

From this it is easy to see that $\check{P}(\mathbf{x}_1, ..., \mathbf{x}_m)$ is 1/m! times the coefficient of $t_1 \cdots t_m$ in the expansion of $P(t_1\mathbf{x}_1 + \cdots + t_m\mathbf{x}_m)$ as a polynomial in $t_1, ..., t_m \in K$. In particular, if $E = K^n$ the definition of \check{P} agrees with another standard one involving derivatives, namely

$$\check{P}(\mathbf{x}_1,...,\mathbf{x}_m) := \frac{1}{m!} \left(\prod_{i=1}^m \sum_{j=1}^n x_{ij} \frac{\partial}{\partial x_j} \right) P(\mathbf{x}),$$

where $\mathbf{x} = (x_1, ..., x_n)$ and $\mathbf{x}_i = (x_{i1}, ..., x_{in})$ $(1 \le i \le m)$. (Note that the right-hand side is independent of \mathbf{x} .) In fact, it is easy to check that \check{P} is symmetric and linear in each variable separately. Euler's identity for homogeneous polynomials can be used to show that $\check{P}(\mathbf{x}, ..., \mathbf{x}) = P(\mathbf{x})$.

If E is a normed space, then P is continuous if and only if \check{P} is continuous. We define multilinear and polynomial norms by

$$\|\check{P}\| = \sup\{|\check{P}(\mathbf{x}_1, ..., \mathbf{x}_m)| : \|\mathbf{x}_i\| \le 1, 1 \le i \le m\}; \\ \|P\| = \sup\{|P(\mathbf{x})| : \|\mathbf{x}\| \le 1\}.$$

These norms are equivalent, and Martin [5] proved that

$$\|P\| \leqslant \|\check{P}\| \leqslant \frac{m^m}{m!} \|P\|$$

for every continuous *m*-homogeneous polynomial P on E. A standard reference is [1, p. 5].

We recall an example, due to Nachbin, which shows that equality can be achieved on the right-hand side. Let ℓ_1^m be the space \mathbb{R}^m with the norm

$$\|\mathbf{x}\| := |x_1| + \dots + |x_m|,$$

where $\mathbf{x} = (x_1, ..., x_m)$. Define the *m*-homogeneous Nachbin polynomial N on ℓ_1^m by

$$N(\mathbf{x}) := x_1 \cdots x_m.$$

Then

$$\check{N}(\mathbf{x}_1,...,\mathbf{x}_m) = \frac{1}{m!} \sum_{\sigma \in S_m} x_{\sigma(1) 1} \cdots x_{\sigma(m) m},$$

where $\mathbf{x}_i = (x_{i1}, ..., x_{im})$ for $1 \le i \le m$ and where S_m is the set of permutations of the first *m* natural numbers. It is not difficult to see [1, p. 6] that

$$\|\check{N}\| = \frac{1}{m!}$$
 and $\|N\| = \frac{1}{m^m}$.

The object of this paper is to study which m-homogeneous polynomials share the extremal properties of N.

DEFINITION. If E is a real normed space and P is a continuous *m*-homogeneous polynomial on E, we say that P is *extremal* if

- (i) $\|\check{P}\| = (m^m/m!) \cdot \|P\|$ and
- (ii) there exist $\mathbf{x}_1, ..., \mathbf{x}_m$ in the unit sphere of E with $\|\check{P}\| = \check{P}(\mathbf{x}_1, ..., \mathbf{x}_m)$.

Note that N automatically has property (ii). The unit sphere of ℓ_1^m is compact.

Sarantopoulos [7] investigated extremal polynomials on *complex* normed spaces. A useful tool for him was the *complex* normed space version of the following reduction lemma. The proof for real normed spaces requires only slight changes to Sarantopoulos' argument.

THEOREM 1 (Reduction Lemma). Suppose P is an extremal m-homogeneous polynomial on a real normed space E and

$$\|\dot{P}\| = \dot{P}(\mathbf{x}_1, ..., \mathbf{x}_m),$$

where $\mathbf{x}_1, ..., \mathbf{x}_m$ are in the unit sphere of E. Then for every m-tuple $(a_1, ..., a_m)$ of real numbers we have

$$||a_1\mathbf{x}_1 + \dots + a_m\mathbf{x}_m|| = |a_1| + \dots + |a_m|.$$

(Thus span $\{\mathbf{x}_1, ..., \mathbf{x}_m\} \subseteq E$ is isometrically isomorphic to ℓ_1^m , and the isomorphism maps $\{\mathbf{x}_1, ..., \mathbf{x}_m\}$ to the standard unit vector basis of ℓ_1^m .)

Sarantopoulos showed that if P is an extremal *m*-homogeneous polynomial on a *complex* normed space E, then the restriction of P to the isometric copy of ℓ_1^m found in the complex version of Theorem 1 is just a

multiple of Nachbin's polynomial of degree *m*. In particular, the only extremal *m*-homogeneous polynomials on *complex* ℓ_1^m are the multiples of Nachbin's polynomial. However, although Theorem 1 is valid for real or complex normed spaces, we shall show that, when $m \ge 4$, the multiples of Nachbin's polynomials are not the only extremal polynomials on real ℓ_1^m .

To give an idea of why there is a difference between the real and complex cases, we consider the Bochnak complexification $\tilde{E} = E \otimes \ell_2^2$ of a real normed space *E*. (See [4] or [6] for an extended discussion of complexifications of real normed spaces.) The norm on \tilde{E} is given by

$$||t||_{\tilde{E}} := \inf \left\{ \Sigma_k ||x_k||_E ||y_k||_{\ell_2^2} : t = \Sigma_k x_k \otimes y_k \right\}.$$

In our context, it is important to note that the Bochnak complexification of any real $L_1(\mu)$ is the corresponding complex $L_1(\mu)$.

Each continuous *m*-homogeneous polynomial P on E has a unique extension \tilde{P} which is a continuous *m*-homogeneous polynomial on \tilde{E} . Moreover, if we write $L = \check{P}$, then $\|\tilde{L}\| = \|L\|$, where \tilde{L} is the unique extension of L, but in general we can only say that $\|\tilde{P}\| \ge \|P\|$.

Now, if $\|\tilde{P}\|$ is extremal, then

$$\|L\| = \|\tilde{L}\| = \frac{m^m}{m!} \|\tilde{P}\| \geqslant \frac{m^m}{m!} \|P\|$$

and so *P* is extremal on *E*. The converse is not generally true. However, the converse is true when m = 2, because $||P|| = ||\tilde{P}||$ for any 2-homogeneous polynomial *P* on any real normed space. (See the comments after Proposition 20 in [6].) It follows from all this that the only extremal 2-homogeneous polynomials on either real or complex ℓ_1^2 are the multiples of Nachbin's polynomial of degree 2.

In this paper we show, by completely different methods, that it is also true that the only extremal 3-homogeneous polynomials on ℓ_1^3 are the multiples of Nachbin's polynomial of degree 3, but that this analogy with the complex case breaks down for extremal *m*-homogeneous polynomials on real ℓ_1^m for every $m \ge 4$. In this case, we show that the supply of extremal *m*-homogeneous polynomials is much larger than before, and *suitable* perturbations of Nachbin's example remain extremal.

2. NORMALIZED EXTREMAL POLYNOMIALS

Clearly, any multiple of an extremal m-homogeneous polynomial P on a real normed space E is still extremal, and the importance of the Nachbin polynomials in the complex case prompts us to assume from now on that

 $\|\check{P}\| = 1/m!$ and $\|P\| = m^{-m}$. In view of the Reduction Lemma, we shall further restrict attention to the situation where *P* is an *m*-homogeneous polynomial on ℓ_1^m . This enables us to compute the norm of the associated symmetric *m*-linear form with ease:

$$\|\check{P}\| = \max\{|\check{P}(\mathbf{e}_{k_1}, ..., \mathbf{e}_{k_m})|: 1 \le k_1, ..., k_m \le m\}$$
(*)

where $\{\mathbf{e}_1, ..., \mathbf{e}_m\}$ is the standard unit vector basis of ℓ_1^m . Referring one more time to the Reduction Lemma, the fact that $1/m! = \|\check{P}\| = \check{P}(\mathbf{e}_1, ..., \mathbf{e}_m)$ constrains P to have the form

$$P(\mathbf{x}) = x_1 \cdots x_m + \sum a_{k_1 \cdots k_m} x_1^{k_1} \cdots x_m^{k_m}$$

where $\mathbf{x} = (x_1, ..., x_m)$ and the summation is over all $(k_1, ..., k_m)$ with at least one k_i greater than 1. In view of all this, a definition is called for.

DEFINITION. An *m*-homogeneous polynomial P on ℓ_1^m is normalized extremal if

(i) $P(\mathbf{x}) = x_1 \cdots x_m + E(\mathbf{x})$, where $\mathbf{x} = (x_1, \dots, x_m)$ and the terms in $E(\mathbf{x})$ have at least one variable raised to a power greater than 1,

- (ii) $||P|| = m^{-m}$,
- (iii) $\|\check{P}\| = 1/m!$.

We write \mathscr{E}_m for the set of all normalized extremal *m*-homogeneous polynomials on ℓ_1^m .

It will be important for us to have detailed knowledge of the behaviour of normalized extremal *m*-homogeneous polynomials at the points where they attain norm.

THEOREM 2. Let $P \in \mathscr{E}_m$ and let $\varepsilon = (\varepsilon_1, ..., \varepsilon_m)$ with each $\varepsilon_i = \pm 1$. Then

(a)
$$P(\mathbf{\epsilon}/m) = \varepsilon_1 \cdots \varepsilon_m/m^m$$
,

(b)
$$P(\mathbf{\epsilon}/m) = (\epsilon_i/m) \cdot \partial P/\partial x_i(\mathbf{\epsilon}/m)$$
 for each $1 \le i \le m$, and

(c)
$$\partial E/\partial x_i(\varepsilon/m) = 0$$
 for each $1 \le i \le m$.

Proof. (a) Since $P \in \mathscr{E}_m$, it follows from the classical polarization formula (see [1, p. 4]) that

$$\frac{1}{m!} = \check{P}(\mathbf{e}_1, ..., \mathbf{e}_m) = \frac{1}{2^m m!} \sum_{\varepsilon_i = \pm 1} \varepsilon_1 \cdots \varepsilon_m P\left(\sum_{i=1}^m \varepsilon_i \mathbf{e}_i\right) \leq \frac{m^m}{2^m m!} \sum_{\varepsilon_i = \pm 1} |P(\varepsilon/m)|$$
$$\leq \frac{m^m}{2^m m!} \|P\| \sum_{\varepsilon_i = \pm 1} \|\varepsilon/m\|^m = \frac{1}{m!}.$$

As all the above inequalities are equalities it follows that $P(\varepsilon/m) = \varepsilon_1 \cdots \varepsilon_m/m^m$, as required for (a).

Since P achieves its norm at ε/m it has a relative extremum at ε/m when it is subjected to the constraint $g(x_1, ..., x_m) := \varepsilon_1 x_1 + \cdots + \varepsilon_m x_m - 1 = 0$. The Lagrange multiplier method now tells us that for some real λ we have

$$\frac{\partial P}{\partial x_i}(\mathbf{\epsilon}/m) = \lambda \varepsilon_i \quad \text{for each} \quad 1 \leq i \leq m.$$

When we combine this with Euler's identity $mP = \sum_{i=1}^{m} x_i \partial P / \partial x_i$, we obtain that $\lambda = mP(\varepsilon/m)$. It follows that

$$P(\mathbf{\epsilon}/m) = (\varepsilon_i/m) \ \lambda \varepsilon_i = (\varepsilon_i/m) \ \frac{\partial P}{\partial x_i} (\mathbf{\epsilon}/m) \qquad \text{for each} \quad 1 \le i \le m,$$

which proves (b).

Finally, observe that for each $1 \le i \le m$, $x_i \partial P / \partial x_i = x_1 \cdots x_m + x_i \partial E / \partial x_i$, and so when $\mathbf{x} = \varepsilon/m$, parts (a) and (b) combined lead to (c).

Remark. It is part of the definition of an extremal *m*-homogeneous polynomial *P* on a normed space *E* that \check{P} achieves its norm. In fact, *P* also achieves its norm, since if $||\check{P}|| = \check{P}(\mathbf{x}_1, ..., \mathbf{x}_m)$, where $\mathbf{x}_1, ..., \mathbf{x}_m$ are in the unit sphere of *E*, then, working as in the proof of Theorem 2(a) it follows that $|P((\varepsilon_1\mathbf{x}_1 + \cdots + \varepsilon_m\mathbf{x}_m)/m)| = ||P|| = m^{-m}$, with each $\varepsilon_i = \pm 1$. Surprisingly, in [8] a norm attaining *m*-homogeneous polynomial *P* satisfying $||\check{P}|| = 1/m!$ and $||P|| = m^{-m}$ has been constructed on the space $E := (\bigoplus_{n=m}^{\infty} E_n)_{\ell_1}$, where each E_n is a copy of ℓ_1^n , distorted in such a way that \check{P} does not attain its norm.

We are grateful to the referee for showing us how to prove the next result, which gives considerable information about the structure of \mathscr{E}_m .

THEOREM 3. If $P \in \mathscr{E}_m$, then $P(\mathbf{x}) = x_1 \cdots x_m + E(\mathbf{x})$, where $E(\mathbf{x})$ is in the ideal generated by

$$\{(x_1^2 - x_i^2)(x_1^2 - x_i^2): 1 < i \le j \le m\}.$$

Proof. Parts (a) and (c) of Theorem 2 tell us that E and all its first order partial derivatives have value 0 at each of the 2^m points $\mathbf{\varepsilon} = (\varepsilon_1, ..., \varepsilon_m)$. We will use this information to obtain the desired structure of E.

The first step is to notice that we can write

$$E(\mathbf{x}) = \sum_{\delta} x_1^{\delta_1} \cdots x_m^{\delta_m} E_{\delta}(x_1^2, ..., x_m^2),$$

where the summation is over $2^{m-1}-1$ possible choices of $\delta \in \{0, 1\}^m$. (Note that $\delta_1 + \cdots + \delta_m$ must have the same parity as m, and so once $\delta_1, ..., \delta_{m-1}$ are chosen, δ_m is determined. The choice $\delta = (1, ..., 1)$ is not permitted.) Notice that each E_{δ} is a homogeneous polynomial of positive degree.

Next, observe that if $r_1, ..., r_m$ denote the first *m* Rademacher functions, then for every $0 \le t \le 1$ we have

$$0 = E(r_1(t), ..., r_m(t)) = \sum_{\delta} r_1(t)^{\delta_1} \cdots r_m(t)^{\delta_m} E_{\delta}(1, ..., 1).$$

As distinct Rademacher products are orthonormal, it follows that

$$E_{\delta}(1, ..., 1) = 0$$

for every permissible $\delta \in \{0, 1\}^m$.

Now, a quick computation shows that for each $1 \le i \le m$ we have

$$\frac{\partial E}{\partial x_i}(\mathbf{x}) = \sum_{\delta} \frac{\partial}{\partial x_i} \left(x_1^{\delta_1} \cdots x_m^{\delta_m} \right) E_{\delta}(x_1^2, \dots, x_m^2) + 2x_i \sum_{\delta} x_1^{\delta_1} \cdots x_m^{\delta_m} \frac{\partial E_{\delta}}{\partial x_i} \left(x_1^2, \dots, x_m^2 \right).$$

Consequently, for every $0 \le t \le 1$,

$$\frac{\partial E}{\partial x_i}(r_1(t), \dots, r_m(t)) = 2r_i(t)\sum_{\delta} r_1(t)^{\delta_1} \cdots r_m(t)^{\delta_m} \frac{\partial E_{\delta}}{\partial x_i}(1, \dots, 1).$$

The same argument as before now gives

$$\frac{\partial E_{\delta}}{\partial x_i}(1, ..., 1) = 0$$

for every $1 \leq i \leq m$ and every permissible $\delta \in \{0, 1\}^m$.

The result is now close. For each permissible δ define

$$F_{\delta}(y_1, ..., y_m) := E_{\delta}(y_1, y_1 + y_2, ..., y_1 + y_m).$$

By what we have just shown, F_{δ} is a homogeneous polynomial of positive degree, d say, which vanishes along with all its first partial derivatives at the point (1, 0, ..., 0). Consequently, it cannot contain terms of the type y_1^d or $y_1^{d-1}y_i$ for any $2 \le i \le m$. This allows us to say that F_{δ} is in the ideal generated by $\{y_i y_j: 2 \le i \le j \le m\}$. Translating, we find that each $E_{\delta}(x_1^2, ..., x_m^2)$, and hence $E(\mathbf{x})$, is in the announced ideal.

Remark. A close look at the proof of Theorem 3 reveals that $E_{\delta}(y_1, ..., y_m)$ cannot have degree 1, and from this it is clear that the only

3-homogeneous normalized extremal on real ℓ_1^3 is Nachbin's polynomial. We give a different proof of this in the next section.

One further structural result on \mathscr{E}_m is quick to obtain.

PROPOSITION 4. \mathscr{E}_m is a convex set.

Proof. Let *P*, *Q* be elements of \mathscr{E}_m and let $0 \le t \le 1$. Evidently R := tP + (1-t) Q satisfies (i), and so, thanks to (*), $\|\check{R}\| \ge 1/m!$. Since $\|\check{R}\| \le t \|\check{P}\| + (1-t)\|\check{Q}\|$, we also have $\|\check{R}\| \le 1/m!$ and hence *R* satisfies (iii). Next, the triangle inequality gives $\|R\| \le m^{-m}$, whereas the fact that $\|\check{R}\|/\|R\| \le m^m/m!$ forces $\|R\| \ge m^{-m}$. Hence *R* satisfies (ii) and we are done.

3. THE CASES \mathscr{E}_2 AND \mathscr{E}_3

For small values of m, \mathcal{E}_m is a very small set—just as in the complex case.

PROPOSITION 5. The Nachbin polynomial $N(\mathbf{x}) = x_1 x_2$ is the only element of \mathscr{E}_2 .

Proof. Let $P \in \mathcal{E}_2$. Then $P(\mathbf{x}) = x_1 x_2 + E(\mathbf{x})$, where $E(\mathbf{x}) = ax_1^2 + bx_2^2$. By Theorem 2(c), $0 = \partial E/\partial x_1 = a$ at the point $(\frac{1}{2}, \frac{1}{2})$. Similarly b = 0 and we are done.

 \mathscr{E}_3 is also a singleton, but to prove this it is handy to appeal to a simple lemma whose proof is a direct consequence of the definition of \mathscr{E}_m .

LEMMA 6. Let $P \in \mathscr{E}_m$ and for each $1 \leq i \leq m$ define P_i by

$$P_i(\mathbf{x}) := -P(x_1, ..., x_{i-1}, -x_i, x_{i+1}, ..., x_m).$$

Then $P_i \in \mathscr{E}_m$.

PROPOSITION 7. The Nachbin polynomial $N(\mathbf{x}) = x_1 x_2 x_3$ is the only element of \mathscr{E}_3 .

Proof. Let $P \in \mathscr{E}_3$. Then

$$P(\mathbf{x}) = x_1 x_2 x_3 + \sum_{1 \le i \le 3} a_i x_i^3 + \sum_{1 \le i \ne j \le 3} b_{ij} x_i x_j^2.$$

By applying Lemma 6 and the convexity of \mathscr{E}_3 we see that $P^{(1)} := \frac{1}{2}(P + P_1)$ is also in \mathscr{E}_3 . But $P^{(1)}$ is derived from P by deleting all terms with even powers of x_1 , and so

$$P^{(1)}(x) = x_1 x_2 x_3 + a_1 x_1^3 + b_{12} x_1 x_2^2 + b_{13} x_1 x_3^2 := x_1 x_2 x_3 + E^{(1)}(\mathbf{x}).$$

Now, using Theorem 2(c), compute successively $\partial E^{(1)}/\partial x_3$, $\partial E^{(1)}/\partial x_2$, $\partial E^{(1)}/\partial x_1$, at $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ to find that $b_{13} = b_{12} = a_1 = 0$.

A similar argument using $P^{(2)} := \frac{1}{2}(P+P_2)$ and $P^{(3)} := \frac{1}{2}(P+P_3)$ shows that all a_i 's and b_{ij} 's are zero, and so $P(\mathbf{x}) = x_1 x_2 x_3$ as required.

4. THE CASES \mathscr{E}_m FOR $m \ge 4$

The plot thickens when m = 4.

THEOREM 8. All $P \in \mathscr{E}_4$ have the form

$$P(\mathbf{x}) = x_1 x_2 x_3 x_4 + \sum_{1 \le i < j \le 4} \gamma_{ij} (x_i^2 - x_j^2)^2.$$

Proof. If $P \in \mathscr{E}_4$ then

$$P(\mathbf{x}) = x_1 x_2 x_3 x_4 + \sum_{1 \le i \le 4} a_i x_i^4 + \sum_{1 \le i \ne j \le 4} b_{ij} x_i x_j^3 + \sum_{1 \le i \le j \le 4} c_{ij} x_i^2 x_j^2 + \sum d_{ijk} x_i^2 x_j x_k,$$

where the final sum is taken over all triples (i, j, k) with $1 \le j < k \le 4$, $1 \le i \le 4$ and neither i = j nor i = k.

Apply Lemma 6 and the convexity of \mathscr{E}_4 twice: first $P^{(1)} := \frac{1}{2}(P+P_1) \in \mathscr{E}_4$ and then $P^{(1)(2)} := \frac{1}{2}(P^{(1)} + (P^{(1)})_2) \in \mathscr{E}_4$. Now $P^{(1)(2)}$ is obtained from P by deleting all terms except those in which the powers of x_1, x_2 are both odd. Thus

$$P^{(1)(2)}(\mathbf{x}) = x_1 x_2 x_3 x_4 + b_{12} x_1 x_2^3 + b_{21} x_2 x_1^3 + d_{312} x_3^2 x_1 x_2 + d_{412} x_4^2 x_1 x_2$$
$$:= x_1 x_2 x_3 x_4 + E^{(1)(2)}(\mathbf{x}).$$

We apply Theorem 2(c) to this polynomial. Evaluating $\partial E^{(1)(2)}/\partial x_3$ and $\partial E^{(1)(2)}/\partial x_4$ at $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ gives $d_{312} = d_{412} = 0$. Next, computing $\partial E^{(1)(2)}/\partial x_1$ and $\partial E^{(1)(2)}/\partial x_2$ at the same point gives

$$b_{12} + 3b_{21} = 0;$$
 $3b_{12} + b_{21} = 0.$

Consequently $b_{12} = b_{21} = 0$.

A similar argument shows that every b_{ii} and d_{iik} is 0, and so

$$P(\mathbf{x}) = x_1 x_2 x_3 x_4 + \sum_{1 \le i \le 4} a_i x_i^4 + \sum_{1 \le i < j \le 4} c_{ij} x_i^2 x_j^2 = x_1 x_2 x_3 x_4 + E(\mathbf{x}).$$

The usual routine with $\partial E/\partial x_i$ evaluated at $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ for each $1 \le i \le 4$ gives

$$2a_{1} + c_{12} + c_{13} + c_{14} = 0$$

$$2a_{2} + c_{12} + c_{23} + c_{24} = 0$$

$$2a_{3} + c_{13} + c_{23} + c_{34} = 0$$

$$2a_{4} + c_{14} + c_{24} + c_{34} = 0.$$

A moment's thought leads to the conclusion that

$$P(\mathbf{x}) = x_1 x_2 x_3 x_4 + \sum_{1 \le i < j \le 4} \gamma_{ij} (x_i^2 - x_j^2)^2$$

with $\gamma_{ij} = -\frac{1}{2}c_{ij}$.

Although we cannot give a complete description of \mathscr{E}_4 , we can say that all *small* perturbations of the Nachbin polynomial $N(\mathbf{x}) = x_1 x_2 x_3 x_4$ of the type described in Theorem 8 will be normalized extremals.

THEOREM 9. Let
$$|a| \leq 4^{-4}$$
 and $|b| \leq 4^{-4}$. Then

$$P(\mathbf{x}) = x_1 x_2 x_3 x_4 + a (x_1^2 - x_2^2)^2 + b (x_3^2 - x_4^2)^2$$

is a polynomial in \mathcal{E}_4 .

COROLLARY 10. If
$$|\gamma_{ij}| \leq \frac{1}{3} \cdot 4^{-4}$$
 for each $1 \leq i < j \leq 4$, then

$$P(\mathbf{x}) = x_1 x_2 x_3 x_4 + \sum_{1 \le i < j \le 4} \gamma_{ij} (x_i^2 - x_j^2)^2$$

is a polynomial in \mathcal{E}_4 .

The corollary follows from the theorem by the convexity of \mathcal{E}_4 .

Proof of Theorem 9. The polynomial described clearly satisfies (i) and (iii) of the definition of \mathscr{E}_4 , and $P(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}) = 4^{-4}$. So we just have to show that $|P(\mathbf{x})| \leq 4^{-4}$ whenever $|x_1| + |x_2| + |x_3| + |x_4| = 1$. In fact, since we are placing no restriction on the signs of *a*, *b* it is enough to show that $|P(\mathbf{x})| \leq 4^{-4}$ whenever $x_1 + x_2 + x_3 + x_4 = 1$ and $x_i \ge 0$ $(1 \le i \le 4)$.

On the boundary of this region, at least one of the x_i 's is zero and so

$$\begin{aligned} |P(\mathbf{x})| &= |a(x_1^2 - x_2^2)^2 + b(x_3^2 - x_4^2)^2| \le |a| \max(x_1^4, x_2^4) + |b| \max(x_3^4, x_4^4) \\ &\le 4^{-4}(\max(x_1, x_2) + \max(x_3, x_4)) \le 4^{-4}. \end{aligned}$$

Consequently we can focus our attention on the local extrema of $P(\mathbf{x})$ subject to the condition $x_1 + x_2 + x_3 + x_4 = 1$ and $x_i > 0$ $(1 \le i \le 4)$. The Lagrange multiplier method shows that at local maxima or minima of $P(\mathbf{x})$ under the constraint $x_1 + x_2 + x_3 + x_4 = 1$, there is a λ for which

$$\frac{\partial P}{\partial x_1} = x_2 x_3 x_4 + 4a x_1 (x_1^2 - x_2^2) = \lambda$$
$$\frac{\partial P}{\partial x_2} = x_1 x_3 x_4 - 4a x_2 (x_1^2 - x_2^2) = \lambda.$$

Subtracting, we get

$$(x_1 - x_2) x_3 x_4 = 4a(x_1 - x_2)(x_1 + x_2)^2.$$

A similar procedure with $\partial P/\partial x_3$ and $\partial P/\partial x_4$ gives

$$(x_3 - x_4) x_1 x_2 = 4b(x_3 - x_4)(x_3 + x_4)^2.$$

Hence there are four possible situations at a local extremum:

(1) $x_1 = x_2, x_3 = x_4$ (2) $x_1 = x_2, x_1 x_2 = 4b(x_3 + x_4)^2$ (3) $x_3 = x_4, x_3 x_4 = 4a(x_1 + x_2)^2$ (4) $x_3 x_4 = 4a(x_1 + x_2)^2, x_1 x_2 = 4b(x_3 + x_4)^2$.

Case (1). Here $P(\mathbf{x}) = x_1 x_2 x_3 x_4$ and we already know that $|P(\mathbf{x})| \le 4^{-4}$ under the given conditions.

Case (2). Here

$$P(\mathbf{x}) = x_1 x_2 x_3 x_4 + b(x_3^2 - x_4^2)^2$$

= $4bx_3 x_4 (x_3 + x_4)^2 + b(x_3 - x_4)^2 (x_3 + x_4)^2$
= $b(x_3 + x_4)^4$

and so it is easy to see that $|P(\mathbf{x})| \leq 4^{-4}$ under the given conditions.

Case (3) is analogous to Case 2.

Case (4). At a local extremum of this type, we have $a(x_1^2 - x_2^2)^2 = \frac{1}{4}x_3x_4(x_1 - x_2)^2$ and $b(x_3^2 - x_4^2)^2 = \frac{1}{4}x_1x_2(x_3 - x_4)^2$, and so at these points the value of *P* agrees with the value of *Q*, where

$$\begin{aligned} Q(\mathbf{x}) &:= x_1 x_2 x_3 x_4 + \frac{1}{4} x_1 x_2 (x_3 - x_4)^2 + \frac{1}{4} x_3 x_4 (x_1 - x_2)^2 \\ &= \frac{1}{4} x_1 x_2 (x_3^2 + x_4^2) + \frac{1}{4} x_3 x_4 (x_1^2 + x_2^2) = \frac{1}{4} (x_1 x_3 + x_2 x_4) (x_1 x_4 + x_2 x_3). \end{aligned}$$

Notice that when $x_1 + x_2 + x_3 + x_4 = 1$ and each $x_i > 0$,

$$\begin{aligned} 0 < Q(\mathbf{x}) \leqslant &\frac{1}{4} \left[\frac{(x_1 x_3 + x_2 x_4) + (x_1 x_4 + x_2 x_3)}{2} \right]^2 = \frac{1}{4^2} (x_1 + x_2)^2 (x_3 + x_4)^2 \\ \leqslant &\max_{0 \leqslant t \leqslant 1} t^2 (1 - t)^2 / 4^2 = 4^{-4}. \end{aligned}$$

Consequently, no local extremum of P in this region has absolute value greater than 4^{-4} .

The proof is complete.

Remark. If $P(\mathbf{x}) = x_1 x_2 x_3 x_4 + a(x_1^2 - x_2^2)^2 + b(x_3^2 - x_4^2)^2$, then $P(\mathbf{e}_1) = a$ and $P(\mathbf{e}_3) = b$. Consequently $P \in \mathcal{E}_4$ if and only if $|a| \leq 4^{-4}$ and $|b| \leq 4^{-4}$.

The structure of \mathscr{E}_m gets increasingly complicated as *m* increases. For example, using techniques similar to those in the proof of Theorem 9, it can be shown that the polynomial

$$P(\mathbf{x}) = x_1 \cdots x_{2k} + a(x_1^2 - x_2^2)^k$$

is in \mathscr{E}_{2k} when $|a| \leq (2k)^{-2k}$. In a more general vein, if $m = m_1 + m_2$, elements of \mathscr{E}_{m_1} and \mathscr{E}_{m_2} can be used to produce elements of \mathscr{E}_m .

PROPOSITION 11. Let $P \in \mathscr{E}_{m_1}$ and $Q \in \mathscr{E}_{m_2}$. Then the $(m_1 + m_2)$ -homogeneous polynomial $R: \ell_1^{m_1+m_2} \to \mathbb{R}$ given by

$$R(x_1, ..., x_{m_1+m_2}) = P(x_1, ..., x_{m_1}) \cdot Q(x_{m_1+1}, ..., x_{m_2})$$

is in $\mathscr{E}_{m_1+m_2}$.

Proof. R certainly satisfies condition (i) of the definition of $\mathscr{E}_{m_1+m_2}$. To check conditions (ii) and (iii), first note that if $\sum_{1 \le i \le m_1+m_2} |x_i| = 1$ and $\sum_{1 \le i \le m_1} |x_i| = t$, then

$$|R(x_1, ..., x_{m_1+m_2})| \leq t^{m_1} ||P|| (1-t)^{m_2} ||Q||.$$

Elementary calculus shows that for $0 \le t \le 1$,

$$t^{m_1}(1-t)^{m_2} \leqslant \left(\frac{m_1}{m_1+m_2}\right)^{m_1} \left(\frac{m_2}{m_1+m_2}\right)^{m_2}$$

with the maximum being achieved at $t = m_1/(m_1 + m_2)$. Plugging in the values of ||P|| and ||Q||, we find that

$$||R|| \leq \frac{1}{(m_1 + m_2)^{m_1 + m_2}}.$$

Evidently $\check{R}(\mathbf{e}_1, ..., \mathbf{e}_{m_1+m_2}) = 1/(m_1 + m_2)!$, and since

$$\|\check{R}\| \leqslant \frac{(m_1 + m_2)^{m_1 + m_2}}{(m_1 + m_2)!} \|R\| \leqslant \frac{1}{(m_1 + m_2)!}$$

it follows that $\|\check{R}\| = 1/(m_1 + m_2)!$. So condition (iii) is satisfied, But then the above inequalities are equalities. In particular $\|R\| = (m_1 + m_2)^{-(m_1 + m_2)}$, and so condition (ii) also holds for *R*.

COROLLARY 12. Let m > 4. If $|\gamma_{ij}| \leq (1/3)(1/4^4)$ $(1 \leq i < j \leq m)$, then

$$P(\mathbf{x}) = \left(x_1 x_2 x_3 x_4 + \sum_{1 \le i < j \le 4} \gamma_{ij} (x_i^2 - x_j^2)^2 \right) x_5 \cdots x_m$$

is in \mathscr{E}_m .

REFERENCES

- S. Dineen, "Complex Analysis in Locally Convex Spaces," Math. Stud., Vol. 57, North Holland, Amsterdam, 1981.
- E. Hille and R. S. Phillips, "Functional Analysis and Semigroups," Amer. Math. Soc. Colloquium Publications, Vol. 31, American Math. Society, Providence, 1957.
- 3. L. Hörmander, On a theorem of Grace, Math. Scand. 2 (1954), 55-64.
- P. Kirwan, "Complexification of Multilinear and Polynomial Mappings on Real Normed Spaces," Ph.D. thesis, National University of Ireland, Galway, 1997.
- 5. R. S. Martin, "Contributions to the Theory of Functionals," thesis, California Institute of Technology, 1932.
- G. Muñoz, Y. Sarantopoulos, and A. Tonge, Complexifications of real Banach spaces, polynomials and multilinear maps, *Studia Math.*, to appear.
- Y. Sarantopoulos, Extremal multilinear forms on Banach spaces, *Proc. Amer. Math. Soc.* 99 (1987), 340–346.
- 8. Y. Sarantopoulos and A. Tonge, Norm attaining polynomials, to appear.