
Journal of Approximation Theory 97, 201�213 (1999)

Extremal Homogeneous Polynomials on
Real Normed Spaces

Pa� draig Kirwan*

University College, Galway, Ireland

Yannis Sarantopoulos

National Technical University, Zografou Campus 157 80, Athens, Greece

and

Andrew M. Tonge

Department of Mathematics and Computer Science, Kent State University,
P.O. Box 5190, Kent, Ohio 44242

E-mail: tonge�mcs.kent.edu

Communicated by Andra� s Kroo�

Received June 15, 1996; accepted in revised form April 30, 1998

If P is a continuous m-homogeneous polynomial on a real normed space and P8
is the associated symmetric m-linear form, the ratio &P8 &�&P& always lies between 1
and mm�m!. We show that, as in the complex case investigated by Sarantopoulos
(1987, Proc. Amer. Math. Soc. 99, 340�346), there are P 's for which &P8 &�&P&=
mm�m! and for which P8 achieves norm if and only if the normed space contains an
isometric copy of lm

1 . However, unlike the complex case, we find a plentiful supply
of such polynomials provided m�4. � 1999 Academic Press

1. INTRODUCTION AND NOTATION

Let E be a vector space over K, where K=R or C. A mapping P: E � K
is said to be an m-homogeneous polynomial on E if P(sx+ty) is an
m-homogeneous polynomial (in the algebraic sense) in s, t # K for arbitrary
fixed x, y in E. It follows easily that, for any k�2, P(t1 x1+ } } } +tkxk) is
an m-homogeneous polynomial (in the algebraic sense) in t1 , ..., tk # K for
arbitrary fixed x1 , ..., xk # E. Consequently, for a finite-dimensional vector
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space E, this abstract definition of an m-homogeneous polynomial coin-
cides with the usual algebraic definition.

As shown in Ho� rmander [3, Lemma 1] (see also [2]), to each m-homo-
geneous polynomial P on E there corresponds a unique symmetric m-linear
form P8 on E such that P8 (x, ..., x)=P(x). The map P8 has a variety of
common names, including the mth polar of P, the polarized form of P, and
the blossom of P. It is defined by

P8 (x1 , ..., xm) :=
1

m!
�m

�t1 } } } �tm
P(t1x1+ } } } +tmxm).

From this it is easy to see that P8 (x1 , ..., xm) is 1�m! times the coefficient of
t1 } } } tm in the expansion of P(t1x1+ } } } +tmxm) as a polynomial in
t1 , ..., tm # K. In particular, if E=Kn the definition of P8 agrees with another
standard one involving derivatives, namely

P8 (x1 , ..., xm) :=
1

m! \`
m

i=1

:
n

j=1

xij
�

�x j+ P(x),

where x=(x1 , ..., xn) and xi=(xi1 , ..., x in) (1�i�m). (Note that the
right-hand side is independent of x.) In fact, it is easy to check that P8 is
symmetric and linear in each variable separately. Euler's identity for
homogeneous polynomials can be used to show that P8 (x, ..., x)=P(x).

If E is a normed space, then P is continuous if and only if P8 is con-
tinuous. We define multilinear and polynomial norms by

&P8 &=sup[ |P8 (x1 , ..., xm)|: &xi&�1, 1�i�m];

&P&=sup[ |P(x)|: &x&�1].

These norms are equivalent, and Martin [5] proved that

&P&�&P8 &�
mm

m!
&P&

for every continuous m-homogeneous polynomial P on E. A standard
reference is [1, p. 5].

We recall an example, due to Nachbin, which shows that equality can be
achieved on the right-hand side. Let lm

1 be the space Rm with the norm

&x& :=|x1 |+ } } } +|xm |,

where x=(x1 , ..., xm). Define the m-homogeneous Nachbin polynomial N
on lm

1 by

N(x) :=x1 } } } xm .
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Then

N8 (x1 , ..., xm)=
1

m!
:

_ # Sm

x_(1) 1 } } } x_(m) m ,

where xi=(xi1 , ..., x im) for 1�i�m and where Sm is the set of permuta-
tions of the first m natural numbers. It is not difficult to see [1, p. 6] that

&N8 &=
1

m!
and &N&=

1
mm .

The object of this paper is to study which m-homogeneous polynomials
share the extremal properties of N.

Definition. If E is a real normed space and P is a continuous
m-homogeneous polynomial on E, we say that P is extremal if

(i) &P8 &=(mm�m!) } &P& and

(ii) there exist x1 , ..., xm in the unit sphere of E with &P8 &=P8 (x1 , ..., xm).

Note that N automatically has property (ii). The unit sphere of lm
1 is

compact.
Sarantopoulos [7] investigated extremal polynomials on complex

normed spaces. A useful tool for him was the complex normed space
version of the following reduction lemma. The proof for real normed spaces
requires only slight changes to Sarantopoulos' argument.

Theorem 1 (Reduction Lemma). Suppose P is an extremal m-homo-
geneous polynomial on a real normed space E and

&P8 &=P8 (x1 , ..., xm),

where x1 , ..., xm are in the unit sphere of E. Then for every m-tuple
(a1 , ..., am) of real numbers we have

&a1x1+ } } } +amxm &=|a1 |+ } } } +|am |.

(Thus span[x1 , ..., xm]�E is isometrically isomorphic to lm
1 , and the

isomorphism maps [x1 , ..., xm] to the standard unit vector basis of lm
1 .)

Sarantopoulos showed that if P is an extremal m-homogeneous polyno-
mial on a complex normed space E, then the restriction of P to the
isometric copy of lm

1 found in the complex version of Theorem 1 is just a
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multiple of Nachbin's polynomial of degree m. In particular, the only
extremal m-homogeneous polynomials on complex lm

1 are the multiples of
Nachbin's polynomial. However, although Theorem 1 is valid for real or
complex normed spaces, we shall show that, when m�4, the multiples of
Nachbin's polynomials are not the only extremal polynomials on real lm

1 .
To give an idea of why there is a difference between the real and complex

cases, we consider the Bochnak complexification E� =E�� l2
2 of a real

normed space E. (See [4] or [6] for an extended discussion of complexi-
fications of real normed spaces.) The norm on E� is given by

&t&E� :=inf [7k&xk&E &yk &l
2
2
: t=7kxk �yk].

In our context, it is important to note that the Bochnak complexification
of any real L1(+) is the corresponding complex L1(+).

Each continuous m-homogeneous polynomial P on E has a unique
extension P� which is a continuous m-homogeneous polynomial on E� .
Moreover, if we write L=P8 , then &L� &=&L&, where L� is the unique exten-
sion of L, but in general we can only say that &P� &�&P&.

Now, if &P� & is extremal, then

&L&=&L� &=
mm

m!
&P� &�

mm

m!
&P&

and so P is extremal on E. The converse is not generally true. However, the
converse is true when m=2, because &P&=&P� & for any 2-homogeneous
polynomial P on any real normed space. (See the comments after Proposi-
tion 20 in [6].) It follows from all this that the only extremal 2-homo-
geneous polynomials on either real or complex l2

1 are the multiples of
Nachbin's polynomial of degree 2.

In this paper we show, by completely different methods, that it is also
true that the only extremal 3-homogeneous polynomials on l3

1 are the mul-
tiples of Nachbin's polynomial of degree 3, but that this analogy with the
complex case breaks down for extremal m-homogeneous polynomials on
real lm

1 for every m�4. In this case, we show that the supply of extremal
m-homogeneous polynomials is much larger than before, and suitable per-
turbations of Nachbin's example remain extremal.

2. NORMALIZED EXTREMAL POLYNOMIALS

Clearly, any multiple of an extremal m-homogeneous polynomial P on a
real normed space E is still extremal, and the importance of the Nachbin
polynomials in the complex case prompts us to assume from now on that
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&P8 &=1�m! and &P&=m&m. In view of the Reduction Lemma, we shall
further restrict attention to the situation where P is an m-homogeneous
polynomial on lm

1 . This enables us to compute the norm of the associated
symmetric m-linear form with ease:

&P8 &=max[ |P8 (ek1
, ..., ekm

)|: 1�k1 , ..., km�m] (V)

where [e1 , ..., em] is the standard unit vector basis of lm
1 . Referring one

more time to the Reduction Lemma, the fact that 1�m!=&P8 &=P8 (e1 , ..., em)
constrains P to have the form

P(x)=x1 } } } xm+: ak1 } } } km
xk1

1 } } } xkm
m

where x=(x1 , ..., xm) and the summation is over all (k1 , ..., km) with at
least one ki greater than 1. In view of all this, a definition is called for.

Definition. An m-homogeneous polynomial P on lm
1 is normalized

extremal if

(i) P(x)=x1 } } } xm+E(x), where x=(x1 , ..., xm) and the terms in
E(x) have at least one variable raised to a power greater than 1,

(ii) &P&=m&m,

(iii) &P8 &=1�m! .
We write Em for the set of all normalized extremal m-homogeneous poly-
nomials on lm

1 .

It will be important for us to have detailed knowledge of the behaviour
of normalized extremal m-homogeneous polynomials at the points where
they attain norm.

Theorem 2. Let P # Em and let ==(=1 , ..., =m) with each =i=\1. Then

(a) P(=�m)==1 } } } =m �mm,

(b) P(=�m)=(=i �m) } �P��xi (=�m) for each 1�i�m, and
(c) �E��x i (=�m)=0 for each 1�i�m.

Proof. (a) Since P # Em , it follows from the classical polarization
formula (see [1, p. 4]) that

1
m!

=P8 (e1 , ..., em)=
1

2mm!
:

=i=\1

=1 } } } =mP \ :
m

i=1

=i ei+�
mm

2mm!
:

=i=\1

|P(=�m)|

�
mm

2mm!
&P& :

=i=\1

&=�m&m=
1

m!
.
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As all the above inequalities are equalities it follows that P(=�m)=
=1 } } } =m �mm, as required for (a).

Since P achieves its norm at =�m it has a relative extremum at =�m when
it is subjected to the constraint g(x1 , ..., xm) :==1x1+ } } } +=mxm&1=0.
The Lagrange multiplier method now tells us that for some real * we have

�P
�xi

(=�m)=*= i for each 1�i�m.

When we combine this with Euler's identity mP=�m
i=1 x i �P��xi , we

obtain that *=mP(=�m). It follows that

P(=�m)=(=i �m) *=i=(=i �m)
�P
�xi

(=�m) for each 1�i�m,

which proves (b).
Finally, observe that for each 1�i�m, xi �P��xi=x1 } } } xm+x i �E��x i ,

and so when x==�m, parts (a) and (b) combined lead to (c).

Remark. It is part of the definition of an extremal m-homogeneous
polynomial P on a normed space E that P8 achieves its norm. In fact, P also
achieves its norm, since if &P8 &=P8 (x1 , ..., xm), where x1 , ..., xm are in the
unit sphere of E, then, working as in the proof of Theorem 2(a) it follows
that |P((=1x1+ } } } +=mxm)�m)|=&P&=m&m, with each =i=\1. Sur-
prisingly, in [8] a norm attaining m-homogeneous polynomial P satisfying
&P8 &=1�m! and &P&=m&m has been constructed on the space E :=
(��

n=m En)l1
, where each En is a copy of ln

1 , distorted in such a way that
P8 does not attain its norm.

We are grateful to the referee for showing us how to prove the next
result, which gives considerable information about the structure of Em .

Theorem 3. If P # Em , then P(x)=x1 } } } xm+E(x), where E(x) is in the
ideal generated by

[(x2
1&x2

i )(x2
1&x2

j ): 1<i� j�m].

Proof. Parts (a) and (c) of Theorem 2 tell us that E and all its first
order partial derivatives have value 0 at each of the 2m points
==(=1 , ..., =m). We will use this information to obtain the desired structure
of E.

The first step is to notice that we can write

E(x)=:
$

x$1
1 } } } x$m

m E$(x2
1 , ..., x2

m),
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where the summation is over 2m&1&1 possible choices of $ # [0, 1]m.
(Note that $1+ } } } +$m must have the same parity as m, and so once
$1 , ..., $m&1 are chosen, $m is determined. The choice $=(1, ..., 1) is not
permitted.) Notice that each E$ is a homogeneous polynomial of positive
degree.

Next, observe that if r1 , ..., rm denote the first m Rademacher functions,
then for every 0�t�1 we have

0=E(r1(t), ..., rm(t))=:
$

r1(t)$1 } } } rm(t)$m E$(1, ..., 1).

As distinct Rademacher products are orthonormal, it follows that

E$(1, ..., 1)=0

for every permissible $ # [0, 1]m.
Now, a quick computation shows that for each 1�i�m we have

�E
�xi

(x)=:
$

�
�xi

(x$1
1 } } } x$m

m ) E$(x2
1 , ..., x2

m)+2xi :
$

x$1
1 } } } x$m

m

�E$

�xi
(x2

1 , ..., x2
m).

Consequently, for every 0�t�1,

�E
�xi

(r1(t), ..., rm(t))=2r i (t) :
$

r1(t)$1 } } } rm(t)$m
�E$

�xi
(1, ..., 1).

The same argument as before now gives

�E$

�xi
(1, ..., 1)=0

for every 1�i�m and every permissible $ # [0, 1]m.
The result is now close. For each permissible $ define

F$( y1 , ..., ym) :=E$( y1 , y1+ y2 , ..., y1+ ym).

By what we have just shown, F$ is a homogeneous polynomial of positive
degree, d say, which vanishes along with all its first partial derivatives
at the point (1, 0, ..., 0). Consequently, it cannot contain terms of the type
yd

1 or yd&1
1 yi for any 2�i�m. This allows us to say that F$ is in the

ideal generated by [ yiyj : 2�i� j�m]. Translating, we find that each
E$(x2

1 , ..., x2
m), and hence E(x), is in the announced ideal.

Remark. A close look at the proof of Theorem 3 reveals that
E$( y1 , ..., ym) cannot have degree 1, and from this it is clear that the only
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3-homogeneous normalized extremal on real l3
1 is Nachbin's polynomial.

We give a different proof of this in the next section.

One further structural result on Em is quick to obtain.

Proposition 4. Em is a convex set.

Proof. Let P, Q be elements of Em and let 0�t�1. Evidently R :=
tP+(1&t) Q satisfies (i), and so, thanks to (V), &R8 &�1�m!. Since &R8 &�
t &P8 &+(1&t)&Q8 &, we also have &R8 &�1�m! and hence R satisfies (iii).
Next, the triangle inequality gives &R&�m&m, whereas the fact that
&R8 &�&R&�mm�m! forces &R&�m&m. Hence R satisfies (ii) and we are
done.

3. THE CASES E2 AND E3

For small values of m, Em is a very small set��just as in the complex case.

Proposition 5. The Nachbin polynomial N(x)=x1x2 is the only ele-
ment of E2 .

Proof. Let P # E2 . Then P(x)=x1x2+E(x), where E(x)=ax2
1+bx2

2 .
By Theorem 2(c), 0=�E��x1=a at the point ( 1

2, 1
2). Similarly b=0 and we

are done.

E3 is also a singleton, but to prove this it is handy to appeal to a simple
lemma whose proof is a direct consequence of the definition of Em .

Lemma 6. Let P # Em and for each 1�i�m define Pi by

Pi (x) :=&P(x1 , ..., x i&1 , &xi , xi+1 , ..., xm).

Then Pi # Em .

Proposition 7. The Nachbin polynomial N(x)=x1x2 x3 is the only ele-
ment of E3 .

Proof. Let P # E3 . Then

P(x)=x1x2 x3+ :
1�i�3

aix3
i + :

1�i{ j�3

bijx ix2
j .

By applying Lemma 6 and the convexity of E3 we see that P(1) := 1
2(P+P1)

is also in E3 . But P(1) is derived from P by deleting all terms with even
powers of x1 , and so

P(1)(x)=x1x2 x3+a1 x3
1+b12x1 x2

2+b13x1x2
3 :=x1x2x3+E (1)(x).
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Now, using Theorem 2(c), compute successively �E (1)��x3 , �E (1)��x2 ,
�E (1)��x1 , at ( 1

3 , 1
3 , 1

3) to find that b13=b12=a1=0.
A similar argument using P(2) := 1

2 (P+P2) and P(3) := 1
2 (P+P3) shows

that all ai 's and bij 's are zero, and so P(x)=x1x2x3 as required.

4. THE CASES Em FOR m�4

The plot thickens when m=4.

Theorem 8. All P # E4 have the form

P(x)=x1x2x3 x4+ :
1�i< j�4

#ij (x2
i &x2

j )2.

Proof. If P # E4 then

P(x)=x1x2 x3x4+ :
1�i�4

a ix4
i + :

1�i{ j�4

b ijxi x3
j

+ :
1�i< j�4

c ijx2
i x2

j +� d ijkx2
i xjxk ,

where the final sum is taken over all triples (i, j, k) with 1� j<k�4,
1�i�4 and neither i= j nor i=k.

Apply Lemma 6 and the convexity of E4 twice: first P(1) := 1
2 (P+P1) # E4

and then P(1)(2) := 1
2 (P(1)+(P(1))2) # E4 . Now P(1)(2) is obtained from P by

deleting all terms except those in which the powers of x1 , x2 are both odd.
Thus

P(1)(2)(x)=x1 x2x3x4+b12x1x3
2+b21 x2x3

1+d312x2
3 x1x2+d412x2

4x1x2

:=x1x2 x3x4+E (1)(2)(x).

We apply Theorem 2(c) to this polynomial. Evaluating �E (1)(2)��x3 and
�E (1)(2)��x4 at ( 1

4 , 1
4 , 1

4 , 1
4) gives d312=d412=0. Next, computing �E (1)(2)��x1

and �E (1)(2)��x2 at the same point gives

b12+3b21=0; 3b12+b21=0.

Consequently b12=b21=0.
A similar argument shows that every bij and dijk is 0, and so

P(x)=x1x2 x3x4+ :
1�i�4

a ix4
i + :

1�i< j�4

cijx2
i x2

j =x1 x2x3x4+E(x).
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The usual routine with �E��xi evaluated at ( 1
4 , 1

4 , 1
4 , 1

4) for each 1�i�4
gives

2a1+c12+c13+c14=0

2a2+c12+c23+c24=0

2a3+c13+c23+c34=0

2a4+c14+c24+c34=0.

A moment's thought leads to the conclusion that

P(x)=x1x2x3 x4+ :
1�i< j�4

#ij (x2
i &x2

j )2

with #ij=&1
2cij .

Although we cannot give a complete description of E4 , we can say that
all small perturbations of the Nachbin polynomial N(x)=x1x2x3x4 of the
type described in Theorem 8 will be normalized extremals.

Theorem 9. Let |a|�4&4 and |b|�4&4. Then

P(x)=x1x2 x3 x4+a(x2
1&x2

2)2+b(x2
3&x2

4)2

is a polynomial in E4 .

Corollary 10. If |#ij |�
1
3 } 4&4 for each 1�i< j�4, then

P(x)=x1x2x3 x4+ :
1�i< j�4

#ij (x2
i &x2

j )2

is a polynomial in E4 .

The corollary follows from the theorem by the convexity of E4 .

Proof of Theorem 9. The polynomial described clearly satisfies (i) and
(iii) of the definition of E4 , and P( 1

4 , 1
4 , 1

4 , 1
4)=4&4. So we just have to show

that |P(x)|�4&4 whenever |x1 |+|x2 |+|x3 |+|x4 |=1. In fact, since we
are placing no restriction on the signs of a, b it is enough to show that
|P(x)|�4&4 whenever x1+x2+x3+x4=1 and x i�0 (1�i�4).

On the boundary of this region, at least one of the xi 's is zero and so

|P(x)|=|a(x2
1&x2

2)2+b(x2
3&x2

4)2|�|a| max(x4
1 , x4

2)+|b| max(x4
3 , x4

4)

�4&4(max(x1 , x2)+max(x3 , x4))�4&4.
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Consequently we can focus our attention on the local extrema of P(x)
subject to the condition x1+x2+x3+x4=1 and xi>0 (1�i�4). The
Lagrange multiplier method shows that at local maxima or minima of P(x)
under the constraint x1+x2+x3+x4=1, there is a * for which

�P
�x1

=x2x3 x4+4ax1(x2
1&x2

2)=*

�P
�x2

=x1x3 x4&4ax2(x2
1&x2

2)=*.

Subtracting, we get

(x1&x2) x3x4=4a(x1&x2)(x1+x2)2.

A similar procedure with �P��x3 and �P��x4 gives

(x3&x4) x1x2=4b(x3&x4)(x3+x4)2.

Hence there are four possible situations at a local extremum:

(1) x1=x2 , x3=x4

(2) x1=x2 , x1x2=4b(x3+x4)2

(3) x3=x4 , x3x4=4a(x1+x2)2

(4) x3x4=4a(x1+x2)2, x1 x2=4b(x3+x4)2.

Case (1). Here P(x)=x1x2x3x4 and we already know that |P(x)|
�4&4 under the given conditions.

Case (2). Here

P(x)=x1x2 x3x4+b(x2
3&x2

4)2

=4bx3 x4(x3+x4)2+b(x3&x4)2 (x3+x4)2

=b(x3+x4)4

and so it is easy to see that |P(x)|�4&4 under the given conditions.

Case (3) is analogous to Case 2.

Case (4). At a local extremum of this type, we have a(x2
1&x2

2)2=
1
4x3x4(x1&x2)2 and b(x2

3&x2
4)2= 1

4 x1x2(x3&x4)2, and so at these points
the value of P agrees with the value of Q, where

Q(x) :=x1x2 x3 x4+ 1
4x1 x2(x3&x4)2+ 1

4x3 x4(x1&x2)2

= 1
4x1 x2(x2

3+x2
4)+ 1

4x3x4(x2
1+x2

2)= 1
4 (x1x3+x2x4)(x1x4+x2x3).
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Notice that when x1+x2+x3+x4=1 and each xi>0,

0<Q(x)�
1
4 _

(x1 x3+x2 x4)+(x1x4+x2x3)
2 &

2

=
1
42 (x1+x2)2 (x3+x4)2

� max
0�t�1

t2(1&t)2�42=4&4.

Consequently, no local extremum of P in this region has absolute value
greater than 4&4.

The proof is complete.

Remark. If P(x)=x1x2 x3x4+a(x2
1&x2

2)2+b(x2
3&x2

4)2, then P(e1)=a
and P(e3)=b. Consequently P # E4 if and only if |a|�4&4 and |b|�4&4.

The structure of Em gets increasingly complicated as m increases. For
example, using techniques similar to those in the proof of Theorem 9, it can
be shown that the polynomial

P(x)=x1 } } } x2k+a(x2
1&x2

2)k

is in E2k when |a|�(2k)&2k. In a more general vein, if m=m1+m2 ,
elements of Em1

and Em2
can be used to produce elements of Em .

Proposition 11. Let P # Em1
and Q # Em2

. Then the (m1+m2)-homogeneous
polynomial R: lm1+m2

1 � R given by

R(x1 , ..., xm1+m2
)=P(x1 , ..., xm1

) } Q(xm1+1 , ..., xm2
)

is in Em1+m2
.

Proof. R certainly satisfies condition (i) of the definition of Em1+m2
. To

check conditions (ii) and (iii), first note that if �1�i�m1+m2
|xi |=1 and

�1�i�m1
|x i |=t, then

|R(x1 , ..., xm1+m2
)|�tm1 &P&(1&t)m2 &Q&.

Elementary calculus shows that for 0�t�1,

tm1(1&t)m2�\ m1

m1+m2+
m1

\ m2

m1+m2+
m2

with the maximum being achieved at t=m1�(m1+m2). Plugging in the
values of &P& and &Q&, we find that

&R&�
1

(m1+m2)m1+m2
.
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Evidently R8 (e1 , ..., em1+m2
)=1�(m1+m2)!, and since

&R8 &�
(m1+m2)m1+m2

(m1+m2)!
&R&�

1
(m1+m2)!

it follows that &R8 &=1�(m1+m2)!. So condition (iii) is satisfied, But then the
above inequalities are equalities. In particular &R&=(m1+m2)&(m1+m2), and
so condition (ii) also holds for R.

Corollary 12. Let m>4. If |#ij |�(1�3)(1�44) (1�i< j�m), then

P(x)=\x1 x2x3x4+ :
1�i< j�4

#ij (x2
i &x2

j )2+ x5 } } } xm

is in Em .
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